Plant Organellar Proteomics in Response to Dehydration: Turning Protein Repertoire into Insights

نویسندگان

  • Deepti B. Gupta
  • Yogita Rai
  • Saurabh Gayali
  • Subhra Chakraborty
  • Niranjan Chakraborty
چکیده

Stress adaptation or tolerance in plants is a complex phenomenon involving changes in physiological and metabolic processes. Plants must develop elaborate networks of defense mechanisms, and adapt to and survive for sustainable agriculture. Water-deficit or dehydration is the most critical environmental factor that plants are exposed to during their life cycle, which influences geographical distribution and productivity of many crop species. The cellular responses to dehydration are orchestrated by a series of multidirectional relays of biochemical events at organelle level. The new challenge is to dissect the underlying mechanisms controlling the perception of stress signals and their transmission to cellular machinery for activation of adaptive responses. The completeness of current descriptions of spatial distribution of proteins, the relevance of subcellular locations in diverse functional processes, and the changes of protein abundance in response to dehydration hold the key to understanding how plants cope with such stress conditions. During past decades, organellar proteomics has proved to be useful not only for deciphering reprograming of plant responses to dehydration, but also to dissect stress-responsive pathways. This review summarizes a range of organellar proteomics investigations under dehydration to gain a holistic view of plant responses to water-deficit conditions, which may facilitate future efforts to develop genetically engineered crops for better adaptation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Organellar proteomics: turning inventories into insights.

Subcellular organization is yielding to large-scale analysis. Researchers are now applying robust mass-spectrometry-based proteomics methods to obtain an inventory of biochemically isolated organelles that contain hundreds of proteins. High-resolution methods allow accurate protein identification, and novel algorithms can distinguish genuine from co-purifying components. Organellar proteomes ha...

متن کامل

Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.).

Dehydration or water-deficit is one of the most important environmental stress factors that greatly influences plant growth and development and limits crop productivity. Plants respond and adapt to such stress by altering their cellular metabolism and activating various defense machineries. Mechanisms that operate signal perception, transduction, and downstream regulatory events provide valuabl...

متن کامل

Organ Specific Proteomic Dissection of Selaginella bryopteris Undergoing Dehydration and Rehydration

To explore molecular mechanisms underlying the physiological response of Selaginella bryopteris, a comprehensive proteome analysis was carried out in roots and fronds undergoing dehydration and rehydration. Plants were dehydrated for 7 days followed by 2 and 24 h of rehydration. In roots out of 59 identified spots, 58 protein spots were found to be up-regulated during dehydration stress. The id...

متن کامل

Towards understanding the evolution and functional diversification of DNA-containing plant organelles [version 1; referees: 3 approved]

Plastids and mitochondria derive from prokaryotic symbionts that lost most of their genes after the establishment of endosymbiosis. In consequence, relatively few of the thousands of different proteins in these organelles are actually encoded there. Most are now specified by nuclear genes. The most direct way to reconstruct the evolutionary history of plastids and mitochondria is to sequence an...

متن کامل

Towards understanding the evolution and functional diversification of DNA-containing plant organelles

Plastids and mitochondria derive from prokaryotic symbionts that lost most of their genes after the establishment of endosymbiosis. In consequence, relatively few of the thousands of different proteins in these organelles are actually encoded there. Most are now specified by nuclear genes. The most direct way to reconstruct the evolutionary history of plastids and mitochondria is to sequence an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016